PRICING TORNADOES: USING CAT MODELS FOR GRANULAR RISK UNDERWRITING

Kevin Van Leer, Product Manager – Americas Climate
National Tornado Summit – Oklahoma City, OK
February 24, 2015

PURPOSE OF RMS
Tool for the Insurance Industry to help with:
- Underwriting
- Portfolio Management
- Risk Transfer

WHY MODEL TORNADO RISK?

OVERALL SEVERE CONVECTIVE STORM RISK

Perils
- Tornado
- Hail
- Straight-Line Wind
- Lightning

Risk
- High Risk to:
 - Aggregate Covers
 - Automobile Lines
 - Large Single Location Risks
 - SFD, MFD, Mobile Home, Commercial, etc.

Loss
- 1/3 of U.S. peril Average Annual Loss (AAL)
- 92% chance of a $1BN event in the U.S. every year
- Two $7BN events in 2011
- Tornado drives tail return period (RP) losses; Hail drives AAL

AAL
- Hail
- Tornado
- Straight-Line Wind

100-Year RP
- Hail
- Tornado
- Straight-Line Wind

FIRST, YOU HAVE TO ANSWER:
WHAT IS THE PROBABILITY OF A TORNADO IMPACTING OKLAHOMA CITY, OK?
HISTORICAL CHALLENGES - OBSERVATIONS

Pros
- Relatively long database
- Detailed location data
- Assimilated from multiple sources

Cons
- Point estimates
- Human observations
- Few nighttime observations
- Reporting methods differ between NWS offices

HISTORICAL CHALLENGES - CLAIMS

Pros
- Location data
- Damage information

Cons
- Point estimates
- Human observations
- Reporting methods differ between insurers
- Typically only a "wind" claim

TORNADO RISK MODELING CHALLENGES

Challenges
- Limited Historical Record
- Few in-situ observations
- Intensity estimate requires damage
- Small Footprints

WHY A HYBRID APPROACH?
- Fills in the gaps associated with incomplete claims and historical data records
- Allows RMS to model the spatial distribution of events more accurately
- Identifies areas of emerging risk
- Implicitly captures the behavior of event clustering

GENERATING AN EVENT CATALOGUE

WHAT IS THE PROBABILITY OF AN EF-3 TORNADO IMPACTING OKLAHOMA CITY, OK?

How is this defined?
HOW DO WE DEFINE TORNADO HAZARD?

- Designated using satellite, aircraft recon, radar, and other observations to determine peak 1-min sustained wind speed at 10 meters
- Wind speed maps directly to the Saffir-Simpson Hurricane Wind Scale
- Wind speed is estimated using damage from the tornado, not direct observations
- Wind speeds map to the Enhanced Fujita Scale

METEOROLOGIST: "That is a tornado, but I can't say how strong it is until there is damage."

DAMAGE INDICATORS

- Contain degrees of damage (DOD) that correspond to damage descriptions and wind speed ranges
- This information provides a basis for developing a vulnerability curve

WHAT IS THE PROBABILITY OF AN EF-3 TORNADO IMPACTING OKLAHOMA CITY, OK?

This is relatively simple to answer, but provides very little value!

WHAT ARE THE ACTUAL APPLICATIONS OF THE EF-Scale AND THE HISTORICAL RECORD?

- Risk Assessment
- Scientific Research
- Mitigation Design
- Media
- Building Codes

WHAT IS THE PROBABILITY OF A TORNADO CAUSING 30% DAMAGE TO A 2-STORY WOOD FRAME SINGLE FAMILY DWELLING IN OKLAHOMA CITY, OK?

This is much more valuable!
HOW VULNERABLE IS THAT BUILDING?

- Evaluate building characteristics and values
- Determine % of building value damaged (i.e. roof, siding)

- Academic Research
- Wind Tunnels
- Damage Surveys
- Papers
- Sanity Checks

EF-Scale Damage Curve
Generate Damage Ratios
Calibration
RMS Vulnerability Curve

HOW DO DIFFERENT TYPES OF BUILDINGS PERFORM?

- Many factors influence vulnerability:
 - Construction
 - Occupancy
 - Location
 - Mitigation (e.g. roof anchors, foundation connections)

- Many lines of business are at or near 100% damage at EF3 intensity

RISK MANAGEMENT APPLICATIONS

- CAT models provide the ability to differentiate between exposures
- Answers the questions for both tornado hazard and vulnerability

Underwriting
- Determining Risk Drivers

Mitigation Cost-Benefit Analysis
- Building Code Analysis
- Risk Transfer

Example numbers from a specific exposure geographic and attribute combination

HOW CAN WE IMPROVE?

IT STARTS WITH THE EF-SCALE!

- The scale is overly precise
- Wind speeds do not always increase with increasing DOD
- Overlapping DODs
- What about construction quality guidance?

WHAT ARE THE NEXT STEPS?

- Can we round the wind speeds?
 - HURDAT rounds to the nearest 5 knots
- Combined DODs?
- Cumulative DODs?
- Construction Quality Guidance?
WHAT ARE THE NEXT STEPS?

- Can we round the wind speeds?
 - HURDAT rounds to the nearest 5 knots
- Combined DODs?
- Cumulative DODs?
- Construction Quality Guidance?
- Mitigation
 - Community mitigation can “shrink the damage path”
 - How do we account for building code variation?

WHERE DO WE GO FROM HERE?

- ASCE Committee for Wind Speed Estimation in Tornadoes
- Work to improve the scale to better match its applications

Email: kevin.vanleer@rms.com

ABOUT RMS

RMS is the world’s leading source of catastrophe data, expertise, and experience for the quantification and management of catastrophe risk. A unit of Wolters Kluwer, RMS combines unparalleled in-depth research with unique data analytics and advanced risk models to provide companies across all market segments solutions that can be trusted as reliable benchmarks for strategic pricing, risk management, and risk transfer decisions.

©2015 Risk Management Solutions, Inc. RMS and the RMS logo are registered trademarks of Risk Management Solutions, Inc. All other trademarks are property of their respective owners.