Using What We Learned in Hurricane Harvey to Strengthen Homes

National Tornado Summit 2019
Dr. Tanya M. Brown-Giammanco, IBHS Senior Director of Research
South Carolina Wind & Hail Underwriting Hail Chair

Hurricane Harvey Weather Conditions
- Initial landfall near Rockport, TX on August 26, 2017 with maximum sustained winds of 130 mph (Cat 4)
- Small size (12 miles radius of max winds) & short duration limited storm surge
- Slow movement
 - Hurricane-force winds near Rockport for 6–7 hours
 - Significant flooding in Houston

Hurricane Harvey Effects
- First major (Category 3 or higher) U.S. landfall since Hurricane Wilma in 2005
- Second most costly hurricane in U.S. history behind Katrina
- At least 68 fatalities
- Estimated $125 billion in damages
- 15,000 homes destroyed

- 25,000 damaged in Aransas, Nueces, Refugio, and San Patricio Counties
- 220,000 customers lost power
- 391,000 claims

IBHS Post-Disaster Investigation Program
Why?
To determine performance of materials and systems on residential buildings when subjected to a Category 3+ hurricane

IBHS Post-Disaster Investigation Tool
- Georeferenced data
- Terrain exposure
- Elevation and roof structure materials and systems
- Openings and opening protection
- Attached structures

Deployment Strategy: Site Selections
Deployment Strategy: Site Selections

Location	Construction Era	Wind Speed Estimate (mph)	General Damage
Portland | 1960s–1970s | 80–90 | Minor
Ingleside | 1960s–1990s | 80–90 | Minor
Mustang Island | 1990s–2010s | 90–100 | Minor (newer homes), Major (older homes)
Aransas Pass | 1990s–2000s | 110–120 | Minor
Port Aransas North | 1990s–2010s | 110–120 | Minor (newer homes), Major (older homes)
Rockport Southwest | 2000s | 120–130 | Minor
Holiday Beach | 1960s–1990s | 120–130 | Major
Port Aransas South | 2000s–2010s | 120–130 | Minor
Rockport Northwest | 1960s–2010s | 130–140 | Major

Preliminary Findings: IBHS Survey Zone Observations

- Wind damage: total destruction to no visible damage
- Exposure affected wind performance
- Roof covering loss was common & water intrusion was problematic
- Widespread use of shutters and plywood reduced structural damage
 Worked best when all openings were protected
- Widespread power loss
- Newer buildings generally performed better

Post-Harvey

- Built in 1987
- Built in 2006

- >85% had shingle roofs
- >50% of shingle roofs were damaged
- 3-tab roofs had higher damage frequency
Building System Performance: Roof Slope

- Most homes had moderate roof slope
- Roof cover damage was generally consistent
- Roof underlayment and decking damage more frequent for lower slopes

Building System Performance: Roof Shape

- Most roof shapes were gable, hip, or gable/hip combo
- Roof cover damage was generally consistent
- Roof underlayment and decking damage was more frequent for gable roofs

Building System Performance: Doors

- Unprotected doors had damage frequencies up to 6x higher
- Highest damage frequencies for slider doors (protected & unprotected)

Building System Performance: Attached Structures

- Often have weak connections
- Can cause additional damage to main building
- 23% evaluated were damaged

Effects of Exposure

- Relatively open exposures had highest damage frequency
- Open exposures were typically located along the bay

Breaking the Cycle

Findings match engineering models
But now we have **Quantitative Data** to assess **Vulnerabilities** instead of just pictures and anecdotes
Wind Speed Effects: Roof Component Damage Severity Vulnerability

Asphalt Shingle Roof Underlayment Damage Severity by Wind Speed

Asphalt Shingle Roof Deck Damage Severity by Wind Speed

Wind Speed Effects: Underlayment & Decking Damage in 110+ mph Zones

- Underlayment damage <10% on most (75%) homes
- Roof deck damage <10% on most (85%) homes

Wind Speed Effects: Garage Door Damage Frequency

- Failure rates low for wind speeds <110 mph
- Single-car garage doors had higher damage frequency (This is consistent with another ongoing post-event IBHS study)
- Only 1 of 62 double-car doors failed
 - Located in all neighborhoods except Holiday Beach & Mustang Island
 - Majority located in Rockport SE
- More research needed to understand vulnerability by door size

Breaking the Cycle

Findings match engineering models
But now we have Quantitative Data to assess Vulnerabilities instead of just pictures and anecdotes
Lessons Learned: Insurers

- Shingles dominate—claims and lab data needed to assess other materials
 - Over 50% of shingle roofs had cover damage
 - 3-tab shingle damage occurred on every home assessed in three neighborhoods
 - Damage severity for architectural shingles was less than 20%
 - Roof slope and shape did not affect roof cover loss

- Terrain exposure affected damage rates
- 23% of attached structures assessed were damaged
- Vulnerability curves produced:
 - Damage frequency and severity of roof cover damage
 - Damage severity of underlayment and decking damage
 - Damage frequency and severity of garage door damage

Lessons Learned: Insurers, Contractors, Homeowners

- Lower damage frequencies for roof decking and underlayment for
 - Steep-slope roofs
 - Hip or hip/gable combo roofs
- Unprotected doors damaged up to 6x more often
- Slider doors had highest damage frequency
- Single-car garage doors failed more than double-car doors

DisasterSafety.org

Questions?

tbrown@ibhs.org
@tanya_bg_wx